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Bayesian stock assessment using catch-age
data and the sampling - importance

resampling algorithm

Murdoch K. McAllister and James N. lanelli

Abstract: A Bayesian approach to fisheries stock assessment is desirable because it yields a probability density function
(pdf) of population model parameters. This pdf can help to provide advice to fishery managers about the consequences

of alternative harvest policies and convey uncertainty about quantities of interest such as population biomass. In stock
assessment, catch-age data are commonly used to estimate population parameters. However, there are few catch-age
analyses that use Bayesian methods. In this paper, we extend the sampling — importance resampling algorithm so that a
pdf of population model parameters can be estimated using catch-age data and indices of relative abundance. We illustrate
the procedure by estimating a 54-parameter pdf for yellowfin sole (Limanda aspera) in the eastern Bering Sea. The
example demonstrates how catch-age data can markedly improve Bayesian estimation, and also illustrates the potential

for significant biases in treating trawl survey abundance indices as absolute measures of stock size.

Résumé : Une approche bayésienne a 1’évaluation des stocks de poissons exploités par la péche est souhaitable
parce qu’elle donne une densité de probabilité (dp) des parametres du modele de population. Cette dp peut aider
les gestionnaires des péches a cerner les conséquences d’autres politiques de récolte et véhiculer I’incertitude au
sujet des quantités d’intérét, comme la biomasse de la population. Toutefois, il existe peu d’analyses des prises par
age qui font appel aux méthodes de Bayes. Dans le présent article, nous étendons 1’algorithme échantillonnage —
rééchantillonnage d’importance de sorte que 1’on puisse estimer une dp des parametres du modéle de population
en utilisant les données sur les prises par dge et les indices d’abondance relative. Nous illustrons la méthode en
estimant une dp a 54 parametres pour la limande a nageoires jaunes (Limanda aspera) dans I’est de la mer de
Bering. L’exemple démontre comment les données sur les prises par dge peuvent servir a améliorer grandement
I’estimation bayésienne et, également, illustre la possibilité d’introduire des biais significatifs lorsqu’on traite les
indices d’abondance obtenus a I’aide de relevés par chalutage comme étant des mesures absolues de la taille des stocks.

[Traduit par la Rédaction]

introduction

Many of the models used to provide advice to fishery man-
agers, for example, about total allowable catches (TACs), re-
quire fixed values for input parameters (e.g., natural mortality
rate (M), recruitment, and fishery selectivity). These assump-
tions often mask the level of uncertainty inherent in stock as-
sessments. Bayesian statistical approaches have recently been
applied to incorporate such uncertainties in advice to fishery
managers (Punt 1993; McAllister et al. 1994; Stocker et al.
1994; Walters and Ludwig 1994; Walters and Punt 1994;
lanelli and Heifetz 1995; Raftery et al. 1995; Kinas 1996).
The resulting Bayesian probability distributions can readily
convey to fishery managers the uncertainty in derived model
quantities such as the biomass of a fish population. Bayesian

Received January 23, 1996. Accepted July 31, 1996.
J13266

ML.K. McAllister.! Fisheries Research Institute, Box 357890,
University of Washington, Seattle, WA 98195-7980, U.S.A.
J.N. Ianelli. National Marine Fisheries Service, Alaska Fish-
eries Science Center, 7600 Sand Point Way NE, Seattle,

WA 98115, US.A.

! Present address: Renewable Resources Assessment Group,
Imperial College, 8 Princes Gardens, London, SW7 INA,
UK.

Can. J. Fish. Aquat. Sci. 54: 284-300 (1997)

methods can also help managers to assess the likelihood of
a variety of outcomes, e.g., rates of population decline, that
could result from a proposed management action such as
setting a harvest level or TAC.

A drawback of adapting Bayesian methods to large (many
parameter) nonlinear models such as those used for age-
structured fisheries stock assessment has been with calcu-
lating the multidimensional integrals that are fundamental
to the joint probability distribution of model parameters.
Monte Carlo methods are the most common methods for
approximating such high-dimensional integrals. These in-
clude Markov Chain Monte Carlo methods (e.g., Metropolis—
Hastings algorithm) and importance sampling (e.g., sam-
pling — importance resampling (SIR) algorithm) (Metropolis
et al. 1953; Hastings 1970; Berger 1985; Rubin 1987, 1988;
Gelfand and Smith 1990; Smith 1991; West 1993). We first
provide a brief overview of the application of these methods
in stock assessment. We then suggest an extension of one of
these methods so that catch-age data can be used in addition
to relative abundance data.

Of the Monte Carlo methods, the SIR algorithm (Rubin
1987, 1988) has been applied most often in Bayesian fish-
eries assessments (e.g., Punt 1993; McAllister et al. 1994;
Stocker et al. 1994; Raftery et al. 1995). In a study that was
not explicitly Bayesian, Francis et al. (1992) used a method
analogous to the SIR algorithm to calculate the biological
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risks of alternative harvesting policies for orange roughy (Ho-
plostethus atlanticus). Only two of several types of the pop-
ulation model input parameters used (i.e., average unfished
biomass, By, and recruitment anomalies, €,) were treated as
uncertain. Raftery et al. (1995) used the SIR algorithm to
estimate probability distributions for bowhead whale (Bal-
aena mysticetus) population parameters. The procedure used
considerable prior information on input parameters for a de-
terministic population dynamics model and estimated quan-
tities relating to the current status of the population such
as the replacement yield in the current year. McAllister et
al. (1994) generalized these approaches to provide the flexi-
bility to incorporate uncertainty in recruitment deviates about
a stock-recruit function, informative priors for several model
parameters, and a Bayesian decision analysis of alternative
harvesting policies. They estimated the posterior by fitting
an age-structured population dynamics model to relative in-
dices of abundance and using age-structured data to construct
priors on recruitment anamolies, e,. However, there is often
relatively little information about input parameters to pop-
ulation dynamics models in relative abundance indices. In
contrast, the incorporation of age frequency or catch-age data
from the commercial catch and (or) from research surveys to
the likelihood function can help to improve statistical infer-
ence about input parameters and derived quantities such as
stock biomass.

In this paper, we extend the use of the SIR algorithm so
that a population dynamics model can be fitted to fishery
catch-age data and survey data. We illustrate the algorithm
using eastern Bering Sea yellowfin sole (Limanda aspera)
data. In the example, we present a new procedure to construct
a prior probability distribution for the constant of proportion-
ality for trawl survey abundance indices that uses survey data
and expert judgment. The example illustrates the potential
improvements in statistical inference that can be obtained by
including catch-age data in a Bayesian stock assessment. The
example also illustrates the large biases that can result from
using area-swept survey abundance indices as absolute rather
than relative measures of stock size.

A conceptual framework for a Bayesian
stock assessment

McAllister et al. (1994) defined a conceptual framework for
a Bayesian stock assessment: a population dynamics model
is fitted to data to construct a posterior probability density
function (pdf) of the vector of model parameters, 8, (e.g.,
By, M, €y). A “state of nature” is one potential realization of
the set of all possible values for 6, say 8;. The probability
that a given state of nature ; is true conditioned on the data,
P(0; | data), is given by

L(data | 6;)p(6;)d®

(D PO dat) = e T0p(©)de’

where p(6;) is the prior probability density for state of nature
i and L(data|6;) is the likelihood function for the data eval-
uated at 6;. The value p(8) represents the probability that a
given state of nature is true prior to obtaining a set of data
that can further our ability to discriminate among alternative
0;.
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Using sampling - importance resampling
and catch-age data to construct
probability distributions for quantities
of interest

A sample from the posterior distribution, P(6|data), can be
used to estimate marginal probability distributions for quan-
tities of interest, such as current population biomass, that
are known functions of the parameters, 6. This sample can
be drawn using the SIR algorithm where it is possible to
generate a sequence of i.i.d. (independent and identically
distributed) random variables (6, 6,,...,0,) that have a
common probability density function, 4(6), called an impor-
tance function (Berger 1985). McAllister et al. (1994) sum-
marized the statistical basis for the SIR algorithm. The pro-
cedure requires that for each vector 6, that is drawn from
h(®), an importance ratio is calculated:

L(data| 0,)p(8y)

@ o= """k

The assignment of importance ratios forms a discrete distri-
bution F(8|data) over (8, 6,,...,8,,) placing mass

w(6;)

m

D w(6y)

k=1

on each 6;. The distribution, F(6|data) over (8, 6,,...,6s),
approximates the actual posterior distribution, P(@|data).
This approximation improves as m increases (Berger 1985,
p- 263; McAllister et al. 1994).

To estimate the marginal posterior distribution for a quan-
tity of interest that is a known function of 8 (e.g., g(0)), the
discrete distribution F(0|data) over (0y, 6,,...,8,,) could be
used (i.e., each g(6;) would be assigned the mass F(6 | data)
over (6), 6;,...,6,,)) (Berger 1985, p. 263). However, this
may be numerically inefficient because m is often very large.
Therefore, a random sample of size n, with n < m, is
taken from F(6|data) over (0, 0,,...,0,,) (i.e., the proba-
bility of drawing 6y, 6,,...,0,, is proportional to F(8, | data),
F(8,|data),..., F(8, | data)). This step is the resampling part
of the SIR algorithm. The empirical distribution for g(8) is
then given by g(6;), g(0,),...,£(6,) with mass 1/n placed on
each of the g(0)s.

A key task of importance sampling is that of finding a
suitable h(8) (van Dijk and Kloek 1983; Berger 1985). This
task becomes increasingly challenging as the number of pa-
rameters increases, and the posterior becomes more complex
(e.g., multimodal). Oh and Berger (1992) suggested the fol-
lowing three guidelines for selecting an importance function.
(i) It should be easy to generate draws from. (ii) The tails
of h(8) (the value h(0) at extreme values of 6) should not
be less dense than the tails of the posterior; otherwise, es-
timated posterior expectations of quantities of interest may
have large variance or even fail to converge with increasing
m. (iii) The density function 4(6) should mimic the true pos-
terior density function reasonably well (e.g., in skewness and
covariance). If the data are not very informative, the model
is fairly simple (e.g., deterministic), or adaptive importance
sampling is used (see Discussion), the prior pdf can some-
times serve as an adequate importance function (Francis et

3) F(0y | data) =
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al. 1992; Kinas 1993; Punt 1993; McAllister et al. 1994;
Raftery et al. 1995). However, in many instances, such as
when catch-age data are available, the prior will be an inef-
ficient importance function.

The multivariate Student ¢ distribution, #0|d, n, V), has
often been used as an importance function (van Dijk and
Kloek 1983; Geweke 1989; West 1992; Kinas 1993):

T'((d+p)/2)
(detV) 72(rd)/21(d2)

(4) t(O|d,u,V) =

1 —(d+p)/2
x(1+3w—uﬂfke—m) :

where d is the degrees of freedom (d > 0), p is the mean if
d > 1, and V is a positive definite p x p matrix (cov(8) =
dviid - 2)if d > 2) (from Berger 1985).

This distribution can be useful provided that each param-
eter in 0 is defined on the interval —oo to co. An advantage
of this distribution over the multivariate normal is that the
tails of the distribution can be adjusted (by changing d) so
that the density is slightly greater than the density in the tails
of the posterior distribution. Furthermore, the mean, p, can
be estimated by the mode of the posterior by nonlinear min-
imization. V can be estimated by the negative inverse of the
estimated Hessian matrix, i.e., the p x p matrix of second
derivatives (3% log(P(6|data)))/(06'0¢/) where ¢ and & are
parameters i and j in 0, evaluated at the mode of P(6]|data)
(van Dijk and Kloek 1983).

Steps for developing an importance function for use
with age data

The following steps can be used to develop an importance

function using the multivariate ¢ density.

(1) Construct an informative prior for key model parame-
ters such as natural mortality rate, M, and the coefficient of
variation (CV) for recruitment variability, 6, (see example
below and Appendix 3).

(2) Construct likelihood functions for each of the types of
data (see below).

(3) Use nonlinear minimization to find the posterior modal
values for 8, 8pg| gu(a)- This is achieved by finding the values
in the vector 6 that minimize the quantity —(log(L(data |®))
+ log(p(6))).

(4) Estimate the covariance, V, about the mode of the joint
posterior by estimating the negative of the inverse of the
Hessian matrix, Vpg| 4ua) (Arnold 1990).

(5) Set the importance function to #(6|d, éP((-)l datay’

Vp(eldaw)) where d is set to some value between 15 and 25
(values in this range have provided satisfactory results).

(6) Where appropriate, transform the parameters so that
the importance function approximates the skewness in the
posterior (van Dijk and Kloek 1983). If a transformation is
used, the multivariate ¢ density must be multiplied by the de-
terminant of the Jacobian (van Dijk and Kloek 1983; Arnold
1990) to obtain the density function for the untransformed
parameters, h(8) (see example below and Appendix 1). This
is necessary for calculating w(8;), since the terms of w(6;)
are in 0, not in the transformed 0 (eq. 2).

(7) Follow the standard steps for importance sampling (see
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below). This requires that parameter values be sampled or
drawn from the importance function. We used the Choleski
decomposition of the variance—covariance matrix to create
parameter draws (Ripley 1987; Nash 1990; Kinas 1993).

(8) Modify the importance function if sampling from it
appears to be too inefficient for estimating the posterior. A
crude index of sampling efficiency is the maximum impor-
tance ratio, w(8y), taken as a proportion of the sum of all
w(0;) over all of the draws. If the sample was taken from
the posterior, this proportion would be equal to 1/m, since
each w(6,) would be equal to some constant. A target, for
example, might be a maximum w(8;) of less than 5% of
the total. However, this target may vary depending on the
situation.

It is advisable to run replicate importance sampling trials
with different random number sequences to evaluate whether
the target can be consistently obtained and whether the repli-
cate posteriors are sufficiently similar. In the example below,
a maximum w(6;) of 4% of the total appeared to provide
estimates of posterior pdfs sufficiently precise for stock as-
sessment and decision analysis (see Results).

Another indicator of sampling efficiency is the CV in w(6;)
where the CV is given by

SD(w(6y))

m

5 CVOn(©Y) =
a;mw

In the example below, increases in CVs to above 60 after
about 50 000 draws of 0 from A(6) indicated that the impor-
tance function was inefficient and required adjustment. It is
also useful to keep track of the parameter values in draws
with the maximum w(8;) to compare with the modal esti-
mates (Oh and Berger 1992). If the drawn values with max-
imum w(8;) are in the tails of the posterior distribution, the
tails of the importance function may be too thin and need to
be modified. This can be remedied by reducing the degrees
of freedom, deemphasizing priors in estimating the Hessian
matrix (see example below), or by reparameterizing to adjust
for skewness. The split ¢ distribution has been suggested as a
more flexible distribution than the multivariate ¢ for making
adjustments for skewness (Geweke 1989). Importance sam-
pling efficiency can also be improved by using estimates of
the covariance matrix of the posterior distribution obtained
from the first round of importance sampling in place of the
Hessian estimate (van Dijk and Kloek 1983). This is because
the estimate of posterior covariance provided by the Hessian
matrix is a “local” estimate of covariance at the mode of
the posterior; the alternative is a “global” estimate of the
posterior covariance (van Dijk and Kloek 1983).

Steps of the SIR algorithm when age data are used
Below, we summarize the steps required to extend the SIR
algorithm in McAllister et al. (1994) to the use of catch-age
data from commercial catches and research surveys.

(1) Once an importance function, (), has been chosen,
draw one set of values 8; for the model inputs from h(8)
(k refers to draw number k, since this step is repeated many
times). For example, draw one set of values for By, a, M, g,
§s0, aso, and the recruitment residuals, €, from A(0) where o
is a stock—recruit parameter, ¢ is a catchability coefficient for
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trawl survey estimates of biomass, sso and asg are selectivity
parameters, and the other parameters have been defined above
(see below).

(2) Project the population dynamics model from the ini-
tial year of the fishery forward to the current year (e.g., see
below), using the values of model inputs, 0,, drawn in step
2 and the known catches to predict stock biomass and catch-
age data. Note that it is unnecessary to assume that unfished
biomass is at equilibrium. Recruitment is assumed to be log-
normally distributed about the assumed (e.g., Ricker) stock—
recruit function (eq. 9). Values for all other parameters are
assumed to be stationary over time. (The projection of the
model from unfished conditions up to the current year will
be referred to as historic trajectory k.)

(3) Evaluate the likelihood function, L(6, | data), mass of
the prior, p(6;), and mass of the importance function, k(8;),
for the kth draw from 4(8), i.e., historic trajectory k (e.g., see
below).

(4) If any of the observed catches exceeds the predicted
exploitable biomass, set the prior to 0. This can be achieved
by adding a penalty function to the log likelihood (see egs.
20 and 21).

(5) Calculate the importance ratio, w(8y), for historic tra-
jectory k (eq. 2).

(6) Repeat steps 2—6 until the desired level of sampling
precision is obtained. In the example below, m = 3 000 000
reduced the maximum w(6;) to 4% of the total. With a fast
desktop computer (e.g., a Pentium 100) and programming
language (e.g., C), this could potentially be achieved in an
overnight run.

(7) Draw a large number (e.g., n = 10 000) of 6; randomly
with replacement from (0, 6,, ..., 0,,) with probabilities pro-
portional to w(8;), w(8,), ..., w(6,,). The resulting sample (8,
8,,...,6,) approximates an i.i.d. sample from the joint pos-
terior pdf of 6. This sample could be used when performing
the decision analysis (McAllister and Pikitch 1997). It is also
useful for estimating the marginal posterior probabilities and
covariances for model input parameters (McAllister et al.
1994).

Estimating a joint posterior probability
distribution of population dynamics
model input parameters for yellowfin
sole in the eastern Bering Sea

The exploitation history of yellowfin sole in the eastern
Bering Sea extends back to the mid 1950s. In the early 1960s,
the population was heavily exploited by foreign trawl vessels
with annual catches up to about 550 000 t (Wilderbuer et
al. 1992) (Fig. 1). Since the early 1970s, fishery removals
have dropped off to about 100 000 t annually and recruited
biomass appears to have recovered to levels over 2 million t
(Wilderbuer et al. 1992). The current U.S. domestic fishery
is managed by TAC quotas that are set annually. Assess-
ment scientists provide the estimates of stock biomass and
allowable biological catch (ABC). The ABC is obtained by
applying to the catch equation the estimate of fishing mor-
tality rate that will reduce spawner biomass per recruit to
35% of that under unexploited conditions, F3s¢ (Clark 1991).
The assessment typically uses age-structured data from the
commercial fishery and a trawl survey and, also, absolute
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Fig. 1. Catch biomass (t), trawl survey (t/10), and TAC (t)
series for yellowfin sole in the eastern Bering Sea.
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estimates of biomass from the trawl survey. However, con-
troversy exists over abundance estimates because recent gear
efficiency studies (D. Somerton, Alaska Fisheries Science
Center (AFSC), National Marine Fisheries Service (NMFS),
Seattle, Wash.) indicate that, for some species, trawl survey
gear is considerably more efficient than is commonly as-
sumed. Below, we describe the model that we used to assess
the status of yellowfin sole and the specifications used to es-
timate a joint posterior probability distribution for the model
parameters and other quantities of interest for fisheries man-
agement.

Population dynamics model

The model is age-structured and assumes that annual recruit-
ment is lognormally distributed about a Ricker stock—recruit
function. The model assumes that recruitment to the fishery
follows a logistic function of age such that a fixed fraction
of individuals within an age class will recruit annually to the
fishery from individuals not previously vulnerable to fishing.
In each year, fishing mortality is assumed to occur after
natural morality has occurred. In 1954, the initial year of
the fishery, population biomass is assumed to be distributed
about By and age structure is partially stationary (e, = O for
ages >8 years).

Resource dynamics
The dynamics of animals of age 2 and above are governed
by the equation

Ny+l,a = e_M(Ny,a—l(l _Hy) + Uy,a—lta)
<
) . 2<a<n
Upsia=€" Uy a1(1 —14) 2<a<m

Nyoim = e_M(Ny,m +Ny )1 —Hy) a=m

where N, , is the number of recuited animals of age a at
the start of the year y, U, , is the number of unrecruited

animals of age a at the start of year y, 1, is the proportion
of unrecruited animals of age a — 1 that recruit at age a:

N 1= -6/ -0,
¢£ is the fraction of animals of age a that would be recruited
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if the population were at its deterministic unexploited equi-
librium level:

1
8 f = :
® * 1+ exp(—s{o(a — ago))

s{o is the slope of the fishery recruitment ogive at 50% re-

cruited, agfo is the age at 50% recruited, M is the instantaneous
rate of natural mortality on animals, Hy is the harvest rate
during year y and occurs after natural mortality (all recruited
animals are assumed to be equally vulnerable to fishing), and
m is the maximum (lumped) age-class (all animals in this and
the previous age-class are recruited and mature).

Births

Ny, =0

©)
Uy, = (Ey_1 expog(l — Ey_y /B)e 712,

where E, is the total reproductive potential of the population
during year y at the time of spawning:

10)  Ey=e ™ uafa(Ny (1 - 0.5Hy) + Uy ),

a=1

W is the fraction of mature fish at age a (see Table 3), f; is
the reproductive potential per individual fish of age a, and
is assumed equal to w,, w, is the mass of a fish of age a
(assumed to be constant throughout the year) (see Table 3):

(1) we =8 (La),

Ly = Loo(1 —e—Ka—10)y, €y is the recruitment residual for year
y: e~157/2 s referred to as the recruitment multiplier (ey
~ Normal(0, 62) (see Table 2), I, is set to 1 if the model is
used for decision analysis (McAllister and Pikitch 1997) and
the year is greater than the last year in which e, is estimated
(i.e., 1990) and O otherwise (setting I, to 1 activates the
lognormal correction error factor; thereby the expected value
for recruits, E[U, ], equates with the value given by the
stock—recruit function), ¢, is the standard deviation of the
log of the multiplicative fluctuations in births, and oy, B are
stock—recruit function parameters.

Initial conditions
The initial numbers-at-age (in 1954 for yellowfin sole) are
given by the equation

Ny o = Ridaexp(—(a—DM)es 1<a<m-—1

Nyl,m = Ry exp(—(m — )M)/
(12) (1 —exp(-M)) a=m

Uyl,a =Ri(1-6q)
xexp(—(a— DM« 1<a<m-1
where R; is the number of 1 year olds at the deterministic
equilibrium that corresponds to an absence of harvesting and
€q is estimated only for cohorts that are included in the first
year of age data. For yellowfin sole, catch age data start in
1964 and the plus group for the age data is 18 yr. Therefore,
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the maximum age in which ¢, is estimated was age 8. For
a > 8, ¢, was set to 0. A value for R; is calculated from
the value for the virgin biomass at midyear (after natural
mortality), By, using the equation

m—1

(13) Ry =Bo/{ > wabd] exp(—aM)

a=1

+wm exp(—mM)/[1 —exp(—-M)] }.

Values for the stock—recruit function parameters o and p are
calculated from the values of R;:

o =0+7TM
BSR,

b= 1~ 1og(1/B)/o0)

4w
BS - ( S uafaeM +
a=1

x exp(—mM) /(1 — exp(—M))) ;

where 33 is the reproductive potential per recruit and o is
the value for a that is selected from the prior distribution for
o. o is given in units of individual age 7 recruits after natural
mortality. The adjustment of o to ¢ is made to rescale the
prior value to the units for recruits in the assessment model
(in age 1 recruits before natural mortality).

Catches
The exploitation rate during year y, H,, is obtained by solving
the equation

G
(15  H,= B,
where C, is the observed annual catch biomass during year
y (assumed to be observed without error) and By is the ex-
ploitable biomass in year y:

m
(16) By =) waNy.e ™.
a=1

Types of data used

The population dynamics model was fitted to two series
of biomass estimates from the trawl surveys in the eastern
Bering Sea: the first series is from 1975 to 1981 and the
second from 1982 to 1994 (Table 1). The data were provided
by G. Walters (AFSC, NMFS, Seattle, Wash.). The two se-
ries were treated separately because the trawl survey gear
was changed in 1982 (see Gunderson 1993 for details). Both
series were treated as indices of relative abundance, each
with its own constant of proportionality. Both were assumed
to have the same asymptotic selectivity function because the
fit of the model to the data was not improved with sepa-
rate selectivity estimates. The removals by survey gear were
assumed to have an insignificant effect on stock size and
to have occurred after recruitment and natural mortality and
after half of the commercial catch had been removed.
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Table 1. Total commercial catch biomass and trawl survey
estimates of biomass of yellowfin sole in the eastern Bering Sea
(tonnes).

Year Catch Survey  Year Catch Survey
1954 12 562 — 1975 64 690 972 500
1955 14 690 — 1976 56 221 —
1956 24 697 — 1977 58 373 —
1957 24 145 — 1978 138433 —
1958 44 153 — 1979 99 017 1 866 500
1959 185 321 — 1980 87 391 1 842 400
1960 456 103 — 1981 97 301 2 394 700
1961 553 742 — 1982 95 712 3 275 300
1962 420 703 — 1983 108 385 3 910 600
1963 85 810 — 1984 159 526 3320 300
1964 11t 177 — 1985 227 107 2 277 400
1965 53 810 — 1986 208 597 1 866 400
1966 102 353 — 1987 181 428 2 465 800
1967 162 228 — 1988 223 156 2 854 600
1968 84 189 — 1989 153 170 2832 180
1969 167 134 — 1990 80 584 2 183 800
1970 133 079 — 1991 95 000 2 393 300
1971 160 399 — 1992 159 038 2 172 900
1972 47 856 — 1993 106 101 2 465 400
1973 78 240 — 1994 100 000 2 610 481
1974 42 235 — 1995 100 000 —

Note: The CV in the survey biomass data was 0.19 (obtained using
equations and data in McAllister 1995, Chap. 1).

The trawl survey data are assumed to be proportional to
the biomass that is susceptible to the survey gear (i.e., By):

m
17y By =e ™M 04Ny o(1 — 0.5H,) + Uy o)W,

a=1

where ¢/, is the proportion of individuals at age a that are
vulnerable to the survey gear,

_ 1

"~ T+exp(—sky(a—aly))’

(18) ¢

s, is the slope of the selectivity ogive at 50% selected, and
as, is the age at 50% selected.

Both series of abundance indices are treated as being log-
normally as

(19)  log(0}) = Normal(log(¢;E)), 5}),

where 0;,' is the jth value of the ith series, g; is the constant
of proportionality of the ith series, E; is the model estimate
of the quantity corresponding to 0} (e.g., B in eq. 17), and
o; is the coefficient of variation for series i. The contribution
of index i to the log likelihood is

(20) A" =-0.5n; log2m) — > _ log(c;0))
j
0.5 4 ;
— 2 102(0; /@E,
J
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where n; is the number of data points for abundance index
series i. The first two terms were ommitted from the calcula-
tions because they contain constants only. The values for the
parameters in ¢;E/ are treated as unknown and estimated.

The proportions at age in the commercial catch are as-
sumed to be given by

@y of = Nav

a,y m
Z Na’,y
a=1

The proportions at age in the trawl survey are assumed to
be given by

(22) Ve

L1 =0.5Hy)N, , + Ugy)
a7.y -

m
> 61— 05H)Ny , + Uy )

a=1

In both the commercial catch-age data series (extending
from 1964 to 1993) and the survey data series (1975 to 1993)
(Table 1), the observed numbers at age in each year were
assumed to be multinomially distributed. The contribution of
series i to the log likelihood is

n; ml
23) N =TS 5ol loglcl))

j=1 a=!

where T7 is the estimated effective sample size for the total
number of fish sampled in each year, 02 J is the proportion at
age from the original sample, c;, J is the predicted proportion
of fish at age « in the jth year of series i, n; is the number
of years in series i, and m’ is the plus group for the age data
(18 yr for both series) (Appendix 2).

The number of fish that were effectively sampled at
random in each age sample (i.e., effective sample size, Pen-
nington and Velstad 1994) was estimated to be 102 for the
fishery series and 104 for the survey series (see Appendix 2).
In the estimation, the values used in the multinomial likeli-
hood function for each year were rounded to 100.

To fit an age-structured model to catch biomass data se-
ries, we assumed that the fraction of fish harvested in each
recruited age class is equal to the ratio of the observed catch
biomass to the predicted exploitable biomass and that the
catch biomass series is known without error (Francis 1992;
Francis et al. 1992; Punt et al. 1993; McAllister et al. 1994).

The log likelihood also incorporated a term for H, that
sets the prior equal to O when the harvest rate exceeds the
maximum possible (similar to the likelihood function of the
observed catch biomass values in Bence et al. 1993):

(24)  *° =—0.5n5 log(2m) — > _log(o5C))
J

0.5 A
- 0—2 Zlog(cj/cjﬁ
j

where o5 is the standard deviation in C; (set very small, e.g.,
to 0.0002, and C; are assumed to be measured without error),

and C’j is given by:
C; = Cjif Hy <099

(25) R
Ci= 0.993; if Hy > 0.99.
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Prior probabilities used

The procedure used a joint prior pdf of multiple model input
parameters. For simplicity, the prior assumes that the param-
eters are all independent of each other. For example, prior
to evaluating the data, no combinations of values for By and
M are assumed to be more or less credible than implied by
the product of their respective prior pdfs. Thus, under the
assumption of independence, prior pdfs are constructed indi-
vidually for each parameter and the joint prior is the product
of the priors for each parameter:

54

26)  p6) =[] r6)

i=1

where p(G;'() is the prior for parameter / in the vector 6.
The 54 estimated model input parameters included the fol-
lowing: (i) virgin biomass, By, (if) stock productivity, o (re-
flecting the slope parameter of the Ricker stock-recruit func-
tion at O spawners, eq. 9), (iii) natural mortality rate, M, (iv)
the constant of proportionality, which relates the trawl esti-
mates of stock biomass to actual biomass, g;, (v) the age at
50% recruited, a{o, (vi) the slope of the fishery recruitment

ogive at 50% recruited, sgo, (vii) the age at 50% vulnerable to
the trawl survey, ai,, (viii) the slope of the trawl selectivity
ogive at 50% vulnerability to trawl survey gear, si,, and (ix)
the annual lognormal recuitment residuals e, from the years
1946 to 1990 (eq. 9). The values for €, for the years 1934—
1945 were fixed at 0 to provide reasonably efficient estimates
of the posterior (the first year of reported catches is 1954).
This caused an underestimate of the posterior variance for
quantities such as By. However, the Hessian estimates of the
CV in the marginal posterior distributions were only slightly
less than when ¢, for the years 1934-1990 were estimated
(e.g., by 1.6% for By).

The procedure uses informative prior pdfs of parameters
By, o, 6,, M, and g; (Table 2). These priors were constructed
from stock—recruit data for other flatfishes and by consulting
the literature and soliciting expert judgment. The prior for
By is uniformly distributed over the interval 500-5000 kt.
The priors for o and o, were constructed using an approach
in McAllister et al. (1994). The prior for a is Normal(1.52,
0.78%) and was obtained from stock and recruit data for 14
other populations of small-sized flatfishes (Fig. 2; and see
Appendix J in McAllister 1995). The prior for o, is log-
normal with a mean of 0.46 and an SD of 0.40 (Fig. 2; and
see Appendix J in McAllister 1995). o, was fixed at the pos-
terior modal estimate (0.40, obtained using nonlinear mini-
mization) for estimating the posterior distribution with SIR
because SIR was too inefficient when the prior for ¢, was
used. McAllister et al. (1994) found that the estimate of the
posterior was relatively insensitive to using an informative
prior for o, versus the best estimate for the population. The
prior pdf of M (Table 2) is lognormal and was parameterized
by setting the 2.5 and 97.5 percentiles of the distribution to
0.08 and 0.18, a range consistent with knowledge of the life
history of yellowfin sole, aging studies, and values used in
stock assessments of 15 other populations of small-sized flat-
fishes (i.e., 0.10 to 0.12) (Wilderbuer et al. 1992; Myers et
al. 1993).

The prior pdfs of g; were lognormal with a mean of 0.44
and a CV of 0.59 for the first series and a mean of 0.97
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Table 2. Priors of some population dynamics model parameters.

Parameter Prior

B, (x1000 t) Uniform(500, 5000)

a Normal(1.52, 0.78%)

c, lognormal(0.46, 0.40%)

g, (y € 1946-1990) Normal(0, o7)

M(year™) M ~ lognormal(0.12, 0.2%)

Grs.s1 lognormal(0.44, 0.59%)

Gs.04 lognormal(0.97, 0.51%)

a, aifyears) Normal(7.5, 3%, af, > 0, ai, >0
oLy sty Normal(1.5, 22), sly > 0, sty > 0

Fig. 2. (a) Empirical and fitted prior pdf of o in the Ricker
stock—recruit function based on stock-recruit data for 14
flatfish stocks in Myers et al. (1993) (see Appendix J in
McAllister 1995). (b) Empirical and fitted prior pdf of o,. (¢)
Plot of the modal estimate of o, versus o for the 14 flatfish
stocks.
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and a CV of 0.51 for the second series (Table 2). These
prior pdfs were constructed by Monte Carlo simulation of
the uncertainties in the following quantities: (i) the mean
proportion of the population within the design in each year,
(ii) the effective width swept by the net, as a fraction of
the estimated width (this reflects the fraction of fish that
encounter the net that are herded in from the trawl doors),
(iii) the fraction that encounter the net that do not escape
underneath the net, and (iv) the mean proportion of the fish
detected as result of migration within the survey design and
vessel avoidance (see Appendix 3 for details).

The priors for the selectivity parameters were diffuse but
roughly centered about values consistent with previous as-
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sessments. The priors for the slope at 50% selected for the
commercial and the survey ogives were both Normal(1.5, 22).
The priors for age (in years) at S50% selected for the com-
mercial and survey ogives were both Normal (7.5, 32). Both
sets of priors were truncated at 0. It is generally improper to
use the results of one assessment to specify priors in another.
However, the priors chosen are very flat and do not affect the
results (see below).

Importance function used for yellowfin sole

The importance function that was used to estimate the pos-
terior for yellowfin sole was constructed using the following
procedure. First, the parameters By, o, (when used), M, s,
and g; were log transformed so that when drawn from the
multivariate ¢ distribution, the untransformed values would
be skewed as they are in the posterior (see Appendix 1 for
details). Second, a nonlinear minimization procedure, based
on a gradient search method that uses numerical derivatives
(Press et al. 1992), was used to find the mode of the poste-
rior. Third, the Hessian matrix was estimated using numer-
ical derivatives of the log of the posterior (i.e., the likelihood
times the prior) at its mode. However, only the priors for M
and e, were included in estimating the Hessian matrix. By
eliminating the other priors from the posterior, the estimated
covariance is slightly larger than that for the posterior with
all of the priors included. This procedure reduces the chance
of using an importance function with sharper tails than the
posterior and improves the efficiency of SIR. The impor-
tance function used was a multivariate ¢ distribution with 25
degrees of freedom, the mean given by the estimate of the
mode of the posterior (with all of the priors), and the variance
given by the negative inverse of the Hessian matrix.

For the stock assessment, the resampling procedure se-
lected 10 000 of the 3 000 000 draws from the importance
function. The base case application of the stock assessment
technique used the relative abundance indices in Table 1,
catch-age data from the commercial fishery and the survey
(McAllister 1995), the catch biomass series (Fig. 1; Table
1), the priors (Table 2), and the biological and technological
parameters (Table 3).

Bayesian estimation of population dynamics model

parameters and stock status
Bayesian estimates of uncertainty in model input parame-
ters and the status of yellowfin sole in the eastern Bering
Sea are conveyed by the marginal posterior pdfs of the fol-
lowing quantities: (i) the model input parameters (e.g., By,
o, M, g;, siy, by, €y), (ii) current-year (1995) stock biomass
(B1gos), and (iii) the amount of depletion from unexploited
conditions (Bjg95/By). Tests were conducted to assess the sen-
sitivity of the posteriors to the use of age data, the use of a
multivariate ¢ distribution developed from properties at mode
of the posterior as an estimate of the posterior distribution
(this would lessen the lengthy Monte Carlo steps required
by SIR (e.g., from 3 000 000 to 10 000)), and the amount
of variability in recruitment, 6,. We wanted to examine how
well a multivariate ¢ distribution approximated the posterior
given by SIR. The multivariate ¢t with 25 degrees of freedom
approaches a multivariate normal.

In the first test, only the relative biomass data were used,
and the age data excluded. The prior pdf was used as the
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Table 3. Values of the model parameters that are assumed to be
known without error in the Bayesian assessment of yellowfin
sole.

Parameter Value
L, (cm) 35.8
K (year™) 0.147
t, (years) 0.47
3, (g/em”) 0.009 721 7
9, 3.0564
Plus group in model: m (years) 21
Plus group in age data: m’ (years) 18
Hi—Hg 0.000
TN 0.075
Wyo 0.135
My 0.270
T 0.375
TP 0415
Mg 0.460
Mis 0.475
Mg 0.486
[T 0.490
Hig=Hpy 0.500

importance function and the selectivity parameters were set
at the modal estimates from the baseline assessment. In the
second test, the posterior from SIR was compared with a
multivariate ¢ with 25 degrees of freedom (eq. 4), parameter
u given by the posterior modal estimates of parameters (with
M, By, g;, and si; on a log scale), and parameter V given by
the Hessian estimate of covariance at the mode of the poste-
rior. Distributions for derived variables such as current stock
size were computed numerically by taking 10 000 random
draws of 6 from the multivariate ¢ distribution, placing mass
1 /10 000 on each drawn 6, computing the derived variable,
g(8), for each 6, and then summing the mass in the appro-
priate interval over g(6). In the third test, the value of o, was
increased from 0.40 to the highest value plausible, 0.55 (i.e.,
the 99.7th percentile of the marginal posterior for o,, based
on the Hessian estimate of the posterior variance in 6, when
o, is estimated jointly with the other parameters).

Results

Using catch-age data markedly updates the priors for most
model input parameters (Figs. 3—7; Table 4). The marginal
posteriors for most of the population dynamics model pa-
rameters have considerably lower variance than the priors
(Table 4). For the estimated recruitment residuals in the last
few years of the historic time series, the posterior reflects the
priors because there are fewer data in the last years (Fig. 6).
The posteriors for current stock size and depletion are also
highly peaked (Fig. 7). The 95% Bayesian confidence in-
tervals (Cls) about the recruited and survey stock biomass
are very tight, especially for the earlier years when very
large catches were taken and the population was heavily
depleted (Figs. 1 and 8). The ClIs become broader in the
late 1970s, despite the addition of survey biomass and age
data, mainly because the catches of yellowfin sole decreased
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Fig. 3. Marginal posterior pdfs and priors of (a) a, (b) By,
and (c) M. The marginal pdfs are shown for the baseline
case, and the case in which the posterior was approximated
by a multivariate ¢ distribution with 25 degrees of freedom
(see text for details).
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Fig. 4. Marginal posterior pdfs and priors of the catchability
coefficient for the trawl survey for the periods (@) 1975-1981
and (b) 1982-1994. The marginals are shown for the baseline
case and the case in which the posterior was approximated by
a multivariate 7 distribution with 25 degrees of freedom (see

text for details).
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Fig. 5. Marginal posterior pdfs and priors of the (a) age at
50% selected and (b) slope of the logistic selectivity function
at 50% selected for the fishery and the commercial catch. The
marginals are shown for the baseline case only.
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Fig. 6. Marginal posterior pdfs and priors of the recruitment
residuals e, for the years (a) 1979-1983 and (b) 1986-1990.
The marginals are shown for the baseline case only.
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Table 4. Estimated ratio of the posterior variance to the prior variance for selected
model input parameters.

Parameter Baseline Biomass data only  Age data only ¢, = 0.55
B, (x1000 t) 0.005 0.507 0.006 0.006
o 0.082 0.550 0.078 0.111
M (year™) 0.313 0.948 0.278 0.490
Grs_g1 0.186 0.310 na 0.259
Gso 04 0.075 0.230 na 0.121
al, (years) 0.001 na 0.001 0.001
as, (years) 0.002 na 0.002 0.002
Lo 0.001 na 0.007 0.001
K 0.005 na 0.007 0.005
€085 0.313 1.12 0.379 0.372
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Fig. 7. Marginal posterior pdfs and priors of (g) virgin stock
size (By), (b) biomass in 1995 (B,g9s), and (c) stock depletion
(Bi995/By). The marginals are shown for the baseline case
with 3 million draws from the importance function and the
three sequences of 1 million draws used and the case in
which the posterior was approximated by a multivariaimates ¢
distribution with 25 degrees of freedom (see text for details).

a. A~ ‘ -+-Series 1 |
—a— Series 2
| --#--Series 3
===Combined |
= Hessian |
1000 1200 1400 1600 1800 2000
Virgin Stock Size (kt)
A
-y
7]
c
@
Q
400 600 800 1000 1200 1400 1600
Stock Biomass (kt)
| C. /Q
| /A
. Y/
0 0.2 0.4 0.6 0.8 1
B1995 / BO

and inferences become less precise when fishing mortality
rates are low (Bence et al. 1993). The plot of the modal es-
timates of recruitment versus spawning potential suggests a
fairly well pronounced Ricker stock-recruit relationship with
some of the largest recruitments occurring under the most de-
pleted conditions (Fig. 9). However, there is still considerable
scatter about the modal stock—recruit function as reflected by
the modal recruitment CV (o,) of 0.40.

When only survey biomass data are used, the marginal
posteriors for model input parameters are not much sharper
than the priors and the marginal pdfs for quantities of interest
such as current stock size are relatively flat (Figs. 10 and 11;

Fig. 8. Median and 95% confidence intervals for (@) recruited
biomass and (b) surveyable biomass of yellowfin sole.
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Table 4). The survey biomass data suggest that stock size is
higher and the stock less productive than under the baseline
scenario when both age and biomass data are used.

The sampling efficiency in estimating the posterior was
much greater when the model was fit to biomass data only.
For example, the maximum w(8;) for a single draw from the
importance function was consistently less than 1% of the total
at less than 500 000 draws. In contrast, the maximum w(6;)
was 4% after 3 million draws from the importance function
when age data were also included (the maximum w(8,) were
12, 4, and 3% in each consecutive sequence of | million in
the 3 million draws) (Table 5). See Discussion for comments
on sampling efficiency.

In test 2, we compared posteriors obtained by using the
SIR algorithm (called the SIR estimator) with a multivariate
t based on the posterior modal parameter values for the mean,
the Hessian estimate of the covariance of the posterior at the
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Fig. 9. Modal estimates of the Ricker stock-recruit function
and recruitment and spawner potential for the series 1954—
1990.
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mode, and degrees of freedom set at 25 (called the Hessian
estimator, Figs. 3, 4, and 7). For most model input parame-
ters, the Hessian estimator was reasonably close to the SIR
estimator. However, the Hessian estimator favored smaller
values for natural mortality rate (Fig. 3). For the derived
quantities such as current stock size, the Hessian estimator
was noticeably more pessimistic (Fig. 7). Current stock size
is lower and depletion is more pronounced under the Hes-
sian estimator. The differences in results between the two
estimators appear to be due to real differences in the distri-
butions rather than due to sampling variability. For example,
the three replicate estimates of the posterior (of 1 million
samples each) from SIR were much closer to each other than
to the one estimated by the multivariate ¢ (Fig. 7). Differences
in marginals between the SIR estimator and the multivariate
t do not necessarily imply that the posterior modal value for
0 is different from that obtained by maximizing the posterior
density function. The differences in estimated marginals be-
tween the posterior and the multivariate ¢ could result from
differences in their shape (e.g., the posterior could be banana-
shaped, while the multivariate ¢ is oval). Therefore, we con-
clude that at least for the yellowfin sole data analyzed here,
the multivariate ¢ with the posterior mode and Hessian esti-
mate of covariance provides significantly poorer estimates of
the posterior pdf relative to the SIR estimator.

The effect of replacing the value for o, of 0.40 with 0.55
was negligible: only slight changes in the marginal poste-
rior pdfs of parameters and other quantities were observed.
The variances in posterior pdf for model input parameters
increased, as might be expected by increasing the amount of
recruitment variability, but only slightly (e.g., the SD in B,
under 6, = 0.55 was 87 kt and under the baseline was 79 kt,
see Table 4).
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Fig. 10. Marginal posterior pdfs and priors of (a) a, (b) By,
and (c) M. The marginals are shown for the baseline case and
the cases in which ¢, = 0.55, and only the survey biomass
data are used.
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Fig. 11. Marginal posterior pdfs of (@) virgin stock size
(By), (b) biomass in 1995 (Be95), and (c¢) stock depletion
(B199s/By). The marginals are shown for the baseline case and
the cases in which o, = 0.55, and only the survey biomass
data are used.
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Table 5. Posterior expectations and standard errors (in parentheses) for virgin biomass (B,), current stock
size (Bqys), and depletion (Bg0s/B,) for three replicate posteriors (each replicate was obtained by taking a
series of 1 million i.i.d. draws from a multivariate f importance function; biomass values are in millions of

tonnes).
Replicate No. of draws Max (% weight) B, B g5 Biges/By
1 1 million 11.8 1.36 (0.08) 0.79 (0.10) 0.58 (0.06)
2 1 million 4.1 1.35 (0.08) 0.79 (0.11) 0.58 (0.07)
3 1 million 32 1.36 (0.08) 0.79 (0.11) 0.58 (0.07)
Combined 3 million 4.1 1.35 (0.09) 0.79 (0.11) 0.58 (0.07)
Discussion

This paper extends the use of the SIR algorithm and demon-
strates that the use of catch-age data, in addition to relative
abundance indices, for estimating a Bayesian posterior distri-
bution can lead to markedly improved precision in estimates
of population dynamics model parameters. The data series
used in the example were highly informative because of the
highly varied exploitation history of the population (i.e., high
fishing effort followed by much lower effort, Hilborn and
Walters 1992), the long time series of catch-age data, the
existence of an independent survey of biomass and age fre-
quency, and the high precision of the data series. For ex-
ample, yellowfin sole is considered to be one of the most
precisely aged fishes in the AFSC (Kimura and Lyons 1991).

However, the precision in posterior estimates is overesti-
mated because several sources of uncertainty were ignored.
These include uncertainty over the amount of recruitment
variability (c,), the recruitment residuals, e, for the earlier
segment of the time series (1934-1945) (ages >8 years in
1954), mass at age, fecundity at age, catch biomass, the
functional forms of survey and fishery selectivity and of
the stock-recruit relationship, nonstationarity in model pa-
rameters, and autocorrelation in recruitment residuals. Fur-
thermore, the multinomial likelihood function, often used in
catch-age assessment methods (e.g., Methot 1990), may not
adequately express the variability in the catch-age data. This
is because sample units (e.g., trawl survey hauls) may capture
groups of similarly aged individuals rather than individuals at
random from the population, an assumption of the multino-
mial sampling process. However, in recent tests that we have
conducted, estimated posterior variances were similar when
the multivariate logistic likelihood function, derived specif-
ically for catch-age data (Schnute and Richards 1995), re-
placed the multinomial. Even if additional uncertainties were

effectively incorporated in a Bayesian assessment, the preci- .

sion would still be considerably higher than that obtainable
using abundance indices only.

In instances such as the current one, when data are highly
informative, the issue of the choice of priors diminishes (Box
and Tiao 1973). However, in the current procedure, informa-
tive priors are still needed for the amount of recruitment
variability, o,, and the rate of natural mortality, M. These
priors are necessary for the development of the importance
function and to permit reasonably efficient SIR (McAllister
et al. (1994).

Alternative Monte Carlo methods for estimating poste-
riors in Bayesian fisheries assessments include adaptive im-

portance sampling (AIS) and Markov Chain Monte Carlo
(MCMC) methods (Givens 1993a, 1993b; Kinas 1993; A.E.
Punt, Commonwealth Scientific and Industrial Research Or-
ganization (CSIRO), Hobart, Tasmania, Australia, personal
communication). In contrast with SIR, AIS is an iterative
importance sampling procedure that often uses as an impor-
tance function a finite mixture of multivariate pdfs, such as
the multivariate Student density (Kinas 1993; West 1993). In
AIS, the normalized importance ratios are used to develop
a new importance function. This process is repeated until
the importance function converges on the posterior distri-
bution. A potential advantage of AIS over SIR is that AIS
may be computationally more efficient than SIR, especially
for estimating complex (e.g., multimodal) posteriors (Kinas
1993). However, AIS can be more difficult to implement be-
cause AIS is considerably more complicated than SIR. Fur-
thermore, it is unclear whether AIS could deal effectively
with the large number of uncertain parameters in catch-age
analysis.

In contrast, MCMC methods are based on iterative Marko-
vian updating schemes for estimating posteriors. “Sampling”
entails a random walk over the posterior probability sur-
face. MCMC methods can be easier to implement than SIR
because they may require less coding and initial start-up
time than importance sampling methods. Also, estimation
of an importance function is not required. However, MCMC
methods may be computationally less efficient than impor-
tance sampling methods (Smith 1991; Givens 1993a). For
example, when we applied the Hastings—Metropolis version
of the MCMC algorithm (Metropolis et al. 1953; Hastings
1970; Gelfand and Smith 1990) to the data for yellowfin sole,
it took several times longer than the SIR algorithm to ob-
tain a reasonably precise estimate of the posterior (Hastings—
Metropolis procedure provided by A.E. Punt). Reassuringly,
the distribution estimated by Hastings—Metropolis was very
similar to that provided by SIR (Fig. 12). Tuning MCMC
so that the draws taken are independent, however, is not
straightforward (Raftery and Lewis 1992). In addition, there
are some conditions in which the MCMC may not necessarily
converge on the posterior (e.g., when the posterior surface is
multimodal or not log-concave, Newton and Raftery 1994).
Furthermore, testing for convergence is also not straightfor-
ward. Because of these various difficulties with implementa-
tion, it may be prudent to apply both the SIR and MCMC
methods whenever time permits to test whether results agree.

As a further advantage, SIR output is more concise and
versatile than MCMC output. SIR output for each sampled
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Fig. 12. Marginal posterior and prior pdfs of (a) a, (b) virgin
stock size (By), and (c) stock biomass in 1995. The marginals
are shown for the baseline case estimated by SIR and the
Hastings—Metropolis algorithms (see Discussion).
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8, can be stored in two numbers: the initial random number
seed that was used to generate each 6, and the importance
ratio, w(0;). These can easily be used to generate marginal
posterior distributions of any quantity of interest in a stock
assessment or decision analysis. Furthermore, it is unneces-
sary to rerun SIR to evaluate the sensitivity of functions of
the posterior of 6 (e.g., quantities from a decision analysis)
to different priors. Instead, one simply divides each baseline
w(8y,) by the baseline prior p(6;) and multiplies by the new
prior p”(6;) to give w”(8;). This avoids redoing the time-
consuming steps of obtaining draws of 6, from A(8) and
calculating the likelihood for each 0. The resampling step
to obtain a set of draws from the new posterior of 6 is then
based on w”(;) rather than w(8,).

In contrast, with MCMC, the full parameter vector must
be stored for each sampled 8;. Furthermore, to test the sensi-
tivity of functions of the posterior of 8 to different priors, it is
necessary to rerun the MCMC procedure. This is because the
random walk that produces the Markov Chain and the draws
of 8 from the posterior is a function of the likelihood and
the prior. Therefore, the random walk must be reinitiated to
obtain a set of draws of 0 from a posterior that has a different
prior. Despite these minor drawbacks, MCMC appears to be a
promising alternative for Bayesian catch-age analysis. Further
research on the application of MCMC (e.g., the Hastings—
Metropolis algorithm) to catch-age data is required before an
MCMC algorithm can be presented in detail as an alternative
to SIR for Bayesian stock assessment and decision analysis.

Can. J. Fish. Aquat. Sci. Vol. 54, 1897

When SIR is used, diagnostics are required to quickly eval-
uate whether the importance function chosen will provide a
reasonably precise estimate of the posterior in an acceptable
duration. They are also required to evaluate whether the es-
timated posterior is sufficiently close to the actual posterior.
The diagnostics that we suggest are ad hoc but appear to
work well in a variety of applications to catch-age data. In
contrast, Kinas (1993) used the entropy relative to uniformity
(ERU) which indicates how close the importance function is
to the posterior. ERU is therefore not an absolute measure
of sampling efficiency (i.e., it does not necessarily indicate
whether an importance function will provide an acceptably
precise estimate of the posterior or whether the final esti-
mate of the posterior is sufficiently precise). For AIS, ERU
is useful because a series of importance functions are used
and the convergence of the importance function to the pos-
terior can be observed. However, ERU is not appropriate
for SIR because only one importance function is used. For
example, there may be a large difference between the im-
portance function and the posterior (i.e., ERU may be very
low); but with many draws the final estimate of the posterior
may be very precise.

We present the multivariate ¢ distribution as an importance
function that can be used for Bayesian catch-age analysis.
However, in the example, this appears to be a relatively inef-
ficient importance function because of the lengthy computing
time, large number of draws used (3 million), and relatively
high value for the maximum importance weight (i.e., 4%,
120 000 times higher than if the ideal importance function,
the posterior, was used). This compares with 20 000 draws
and a maximum weight <1% in McAllister et al. (1994)
and about 300 000 draws and <1% in Raftery et al. (1995).
Furthermore, it was not possible to include the prior for o,
because SIR became too inefficient. Fixing o, at its modal
value appeared to be a reasonable remedy and does not ap-
pear to bias the posterior (see McAllister et al. 1994). The
SIR algorithm also performed poorly when all of the re-
cruitment residuals at the beginning of the time series (the
period during which no catch-age data exist) were treated as
uncertain. Fixing the earliest residuals in the time series to
zero remedied the situation and did not appear to bias the
estimates of the posterior distribution.

Despite the inefficiencies of the multivariate ¢, an accept-
ably precise estimate of the posterior was obtained within a
tolerable amount of computing time. For example, three repli-
cate posteriors, each obtained by taking 1 million draws from
the importance function, closely resemble each other (Fig. 7).
Furthermore, the posterior expectations and standard errors
for, e.g., By, Bjgos, and Biggs/By were very close despite the
relatively large weights in each series (11.8, 4.1, and 3.2%)
(Table 5). In other applications of the multivariate r distribu-
tion to catch-age data, much lower maximum weights have
been obtained after fewer draws (e.g., <1% in <500 000
draws). Problems with efficiency could also be overcome by
using better approximations of the posterior for the impor-
tance function or by using adaptive importance sampling (see
Oh and Berger 1992; Kinas 1993; Newton and Raftery 1994).

Our approach differs in a variety of ways from that of
Walters and Punt (1994), who used catch-age data to esti-
mate a posterior distribution for the probability of sustaining
current stock size from alternative allowable catch options.
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For example, their estimation algorithm was based on virtual
population analysis (backward calculation of numbers at age)
tuned to a survey biomass series. Only few model parame-
ters were treated as uncertain and a grid-based approach was
used to compute the posterior distribution. Also, the poste-
riors on current-year stock biomass computed in Walters and
Punt (1994) were more diffuse than the one in this paper be-
cause the time series of data was shorter and data were less
informative.

Finally, the application of the procedure to yellowfin sole
in the eastern Bering Sea demonstrates a simple way of in-
corporating uncertainty in scaling (via the ¢ parameter) abso-
lute survey abundance estimates. Clearly, uncertainty in this
parameter can have broad implications for fishery manage-
ment because the assessment of current stock size is the crit-
ical issue. For example, the estimates of population biomass
given by the baseline Bayesian assessment were about 50%
of those given with ¢ fixed at 1.0 and assumed known with
certainty. Also, by ignoring uncertainty in the value of g, the
uncertainty in the estimate of current biomass will be un-
derestimated. Hence, we advocate treating g as an estimated
parameter and expressing stock assessment uncertainty using
estimates of posterior probability distributions. Information
about g (e.g., from studies on gear efficiency) that is not
contained in the likelihood function can be included in the
prior as has been done in the current paper. The idea that
biases can result from treating g as known and fixing it at
some value is not new but needs to be reemphasized because
of existing practices.

The Bayesian estimation approach developed in the current
paper is flexible and intuitively appealing and could be ap-
plied in a wide variety of situations involving catch-age data.
For example, the procedure has been applied successfully to
other sets of fishery age data in the Pacific Northwest (J.
Ianelli), New Zealand (T. Hammond and R. Hilborn, School
of Fisheries, University of Washington, Seattle, Wash.), Eng-
land, and Australia (A.E. Punt, CSIRO, Hobart, Tasmania).
The multivariate pdf that is estimated by the procedure is not
only useful in stock assessment. It is also a key input to de-
cision analyses of alternative management policies (Francis
et al. 1992; McAllister et al. 1994). The posterior pdf of
population parameters for yellowfin sole that we estimated
is used in a companion paper (McAllister and Pikitch 1997)
to evaluate the potential trade-offs among alternative trawl
survey designs in the eastern Bering Sea.
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Appendix 1

Derivation of the importance function when some vari-
ables in the multivariate ¢ distribution are log trans-
formed

Some of the population dynamics model parameters (e.g., M,

By, o+, qi, sgo in Table 2) were log transformed for use in the

multivariate ¢ importance function. This was to reproduce the

skewness in the marginal posteriors for these parameters and

improve the efficiency of SIR (van Dijk and Kloek 1983).

During importance sampling, the importance ratios, w(8y),

are computed:

L(data | 8;)p(6;)

(L1 w(®) o

where 6, is one particular realization of the vector of popu-
lation dynamics model input parameters 8, w(6;) is the im-
portance ratio, L(data|@;) is the likelihood function of the
data evaluated at 6, p(0,) is the prior pdf evaluated at 6,
and h(0;) is the importance function evaluated at 8, (Berger
1985, p. 263). The posterior of interest is for the vector of un-
transformed parameters, 6. The importance function, A(6) in
eq. 1.1, thus must be a density function of the untransformed
variables (van Dijk and Kloek 1983).

With log transformation of some of the variables in the
multivariate ¢ distribution, the derivation of the resulting den-
sity function for the untransformed variables is fairly simple.
It can be shown that if some of the variables in a multivariate
t distribution are on a log scale, then the importance function
for the untransformed variables is given by

r(d+p)/2)
(det V)1/2(ndy/21T(d /2)

(1.2)  h(8|d,pn, V) =abs[det J]

1 —(d+p)/2
x (1 + g(e” _ l‘l)l‘/—l(ell _ u))

where 8" is the vector of estimated model input parameters,
some of them log transformed, d is the degrees of freedom,
u is the mean of the vector 8”, Vis a p x p positive definite
matrix, and abs[det J] is the absolute value of the Jacobian,

© 1997 NRC Canada


http://www.nrc.ca/cisti/journals/cjfas/cjfas54/fishco97.pdf

McAllister and lanelli

the determinant of the matrix J whose (iyj)th component is
(Arnold 1990)

aJ ,
Ji,j = @Z(e’)

where z(6') is the transformed parameter 6" expressed as a
function of the ith parameter €',

When some of the members of the vector 6;” are log trans-
formed, J is a diagonal matrix with “1” for each of the un-
transformed parameters in ;" and “1/8}” for each of the log
transformed parameters Gf( where J is the index for parameter
Jj- It can be shown that abs[det J] is simply the absolute value
of the product of the terms in the diagonal of J:

P 1 (-1
(1.3)  abs[det J]=abs |[] (—)
=1}

=1

where (-);( is the untransformed value for the jth parameter of
the vector 6, I; = 0 if 0} is log transformed in 6,” and /; = 1
if not.

Note that the result in eq. 1.2 is equivalent to using an
importance ratio in the transformed parameters. For example,
the prior in the transformed parameters is given by

7"y p(0)
(i.4) p(0") = m-

This follows from the standard formula for a change of vari-
ables (Arnold 1990).

In the SIR algorithm, values for the vector 6”, some of them
on a log scale, are drawn from a multivariate ¢ distribution.
This is equivalent to drawing 6, from the density function
in eq. 1.2. The density of the importance function A(9) is
evaluated at 9; using eq. 1.2. The calculated density is then
used to compute the importance ratio w(6y) (eq. 1.1).

Appendix 2

Likelihood function for catch-age data

The numbers of fish at age were considered to be multinomi-
ally distributed. An appropriate likelihood function for these
data could be

@D A =>"3"xlloglc )

Jj=1 a=1

where x! . is the observed number of fish, ¢/ . is the predicted
proportion of fish at age a in the jth year of series i, n; is
the number of years in series i, and m' is the plus group for
the age data (18 years for both series). However, owing to
the sampling methodology, the assumption of multinomial
sampling does not hold. The effective sample size per year,
i.e., the number of independent sample units, is believed to
be much smaller than the actual number of fish aged per
year. This is because the fish are not sampled one by one
at random from the entire population. Instead the fish tend
to range about in groups of similar ages. Thus, when they
are sampled, they are scooped up in nets along with fish of
similar ages. It is therefore common practice not to use the
original number aged as the effective sample size. Instead,
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the proportions at age from the original sample are calculated
by

.oxt.

i ey
22) o iTT)
where T;; is number of fish aged in year j and series i, and
a much smaller number is used for the sample size in each
year (T’ < T, J) It is also common practice to assume that
the sample size is the same in each year (e.g., Methot 1990).
Hence, 7! is used instead of T} . i j- The effective number of
fish observed in each age a, year j, and series i is given by

23)  xij=Tiol;.

Therefore, the contribution of series i to the log likelihood is

T; Z Zo log(ca,,)

j=1 a=1

24) N=

where T; is the estimated effective sample size for the total
number of fish sampled in each year. T; was estimated by
starting with a first guess at 7; and then estimating 7; by
using (see below for derivation)

ZC (1 —
ZE)<0£J —Ca)’
a=1

@5 T,=

The values of cfz. that were used were obtained from the
modal estimate from the posterior pdf of the model input
parameters. The estimated effective sample size for series i
was obtained from the mean of the estimates of effective
sample size over the series

PRI
ny 2T
ljzl

Q6 Ti=

The estimate, T,, was estimated iteratively by inputting the
last estimate of 7; into the estimation procedure to obtain
the mode of the posterior of model input parameters and then
reestimating 7;. The estimates of T, converged at 104 and 102
for the trawl survey and catch age series, respectively.

Equation 2.5 is derived from the following:

; 5 ¢ (=2t )
@7 var(oad) = E(oaJ- u,;) J—LT- .
ij
where ¢ J is the true proportion of fish at age in series i

in year j, assuming that the sample from the population is
multinomially distributed. Using a normal approximation and
eq. 2.7, the variance in the observed proportion can be ap-
proximated by

(1 —cl 5

(2.8)  var(o} ;) = (oh; —ch ) = LT%L
iy

where sz J is the posterior modal estimate of cf, J° The estimate
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of T;; in eq. 2.5 is obtained by rearranging the following
equality:

m’ m m i (1=¢ )
29 iy o e V2 aj aj’
(2.9) ‘; var(ol, ;) aX::l(oa J—Ch) az:; T

Appendix 3

Constructing priors for catchability in trawl survey
biomass indices

The catchability coefficients, g;, relate the trawl survey abun-
dance indices to the biomass of yellowfin sole in the eastern
Bering Sea that is potentially vulnerable to trawl survey
gear. Separate prior distributions for ¢; were constructed for
the two trawl series, one from 1975 to 1981 and the other
from 1982 to 1994. This was because the trawl survey gear
was modified in 1982 to make it more efficient for bottom
dwelling species (e.g., starting in 1982, two extra 61-cm sec-
tions of chain were attached to the footrope of the net so that
better bottom contact was achieved, Gunderson 1993).

The method used to construct the priors for g; is analogous
to the Monte Carlo approach used by McAllister et al. (1994)
to construct a prior for a constant of proportionality for an
acoustic biomass series. The procedure has five steps: (i)
identify the variables that affect ¢;, (if) construct g; as an
explicit function of these variables, (iii) construct pdfs for
these variables using the scientific literature, data that are
not in the likelihood function in Bayesian posterior (Equation
1), and by consulting technical experts on the processes of
interest, (iv) estimate a distribution for g; using Monte Carlo
simulation, and (v) fit a parametric density function to the
estimated distribution.

The mean size of ¢; for each time series depends on several
factors. If values for each of these factors are assumed to be
independent and are randomly generated from their respec-
tive distributions, the value for the catchability coefficient for
the trawl series from 1982 to 1994 can be calculated using
the equation

B g=p-m-c-h

The value for g, can be calculated using

32 q =p'm"~c72-h.
These factors and their distributions are explained below.
Herding (/) is the ratio of the total number of fish that
encounter the net to the number that encounter the net that
are immediately before the net as it approaches. This factor
reflects the bias introduced by having fish herded by the trawl
doors into the estimated path swept by the net. The estimated
path swept in the eastern Bering Sea trawl survey is that
between the wing tips of the net. The trawl doors are large
metal plates that drag along the bottom and help to keep
the net spread wide open. Several studies indicate that these
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increase the catching power of the net by scaring fish from
outside into the path swept by the net (Harden Jones et al.
1977). David Somerton (AFSC, NMFS, Seattle, Wash.) has
conducted some trawl experiments with trawl gear similar to
that used in the eastern Bering Sea trawl survey to estimate
this herding component. His studies and other studies that he
is familiar with suggest the following distribution for # for
flatfishes: A is a truncated Normal(2.25, 0.50%) with h > 0.

Efficiency of the trawl net given that fish have encoun-
tered the net (c;) for each trawl series i: this is the proportion
of the fish that encounter the net that go into it and do not
escape. Craig Rose (AFSC, NMFS, Seattle, Wash.) has con-
ducted some underwater video experiments using the same
trawl gear as that used in the eastern Bering Sea trawl survey
and estimated that very few flatfish that encounter the net es-
cape. This suggests the following distribution for ¢ for the net
used between 1982 and 1994: ¢, is a truncated Normal(0.90,
0.05%) with ¢; < 1. Studies that compare the relative effi-
ciency of the more recent gear with that of the gear used
before 1982 suggest that the more recent gear may be two or
more times more efficient than the older gear (Hoff 1989).
The assumed distribution for this ratio, r, for several ranges
of sizes of yellowfin sole in Hoff (1989) suggests the fol-
lowing distribution for r : r is lognormal(2.5, 0.352). The
mean and the variance used are calculated from the means
of the estimates and their variances in Hoff (1989) for size
groups 20 cm and larger. The value of ¢; for the series before
1982 is given by ¢, /r.

Proportion of the population of yellowfin sole in the eastern
Bering Sea that on average across years is within the area
of the survey (p): this variable is modeled as a function of
the proportion of the biomass that is to the north of the
design, Py, and the proportion of the biomass that is to the
east of the design, Pg. Work in McAllister (1995, Chap. 1)
suggests that these proportions can be modeled as follows:
PN ~ Uniform(0.05, 0.20) and Py ~ Uniform(0.05, 0.20).
The proportion of the biomass within the design is given by

1

Bias from migration of fish within the design and vessel
avoidance (Engds and Ona 1990) (m”). work in McAllister
(1995, Chap. 2) suggests that if yellowfin sole migrate in-
shore at a rate of about 0.1 m/s, the expected bias is about
—30%. At a migration rate of 0.2 m/s, this becomes —50%.
At 0.5 m/s, this would be —75%. Vessel avoidance would
also increase the negative bias in trawl biomass estimates.
m" was assumed to have a truncated Normal(0.60, 0.20%)
distribution with m” > 0. The variance is a reflection of the
amount of uncertainty in the interannual mean value of this
quantity.

Any values for g; that were less than 0.05 were discarded.
Lognormal distributions were fitted to the resulting distribu-
tions for g; and ¢,. The resulting distributions were q; ~
lognormal(0.44, 0.59%) and ¢, ~ lognormal(0.97, 0.512).
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